本文最后更新于:2020年7月2日 晚上
* 最近拖延症又犯了。。。嗯。。。废话不多说。。。直接上硬货。。。→_→ *
比较select系统调用请戳传送门——select内核源代码剖析
了解poll机制请戳传送门——poll机制内核源代码剖析
- epoll_create
这是Linux_3.0.12内核版本。。。和之前剖析的2.4.0内核版本的系统调用有一些差别。。。所以直接进SYSCALL_DEFINE1。。。
//为每一个监听的事件都分配一个epitem数据结构
struct epitem {
/* RB tree node used to link this structure to the eventpoll RB tree */
//每个epitem都存放在eventpoll中以rbr为根的红黑树中
//rbn记录epitem在红黑树中的结点
struct rb_node rbn;
/* List header used to link this structure to the eventpoll ready list */
//每个就绪事件所对应的epitem都链入了eventpoll中的rdllink
//rdllink记录就绪链表头
struct list_head rdllink;
/*
* Works together "struct eventpoll"->ovflist in keeping the
* single linked chain of items.
*/
//记录每个epitem在eventpoll数据结构中的ovflist的下一个epitem
struct epitem *next;
/* The file descriptor information this item refers to */
//epoll_filefd数据结构记录epitem所对应的struct file和fd文件描述符
struct epoll_filefd ffd;
/* Number of active wait queue attached to poll operations */
//poll操作上的等待队列个数
int nwait;
/* List containing poll wait queues */
//包含等待队列对头的单链表
struct list_head pwqlist;
/* The "container" of this item */
//记录epitem所属哪一个eventpoll数据结构
struct eventpoll *ep;
/* List header used to link this item to the "struct file" items list */
//记录epitem所对应的struct file的单链表
struct list_head fllink;
/* The structure that describe the interested events and the source fd */
//记录epitem对应的epoll_event数据结构,epoll_event是epoll_ctl函数传入的参数
struct epoll_event event;
};
struct eventpoll {
/* Protect the access to this structure */
spinlock_t lock;
/*
* This mutex is used to ensure that files are not removed
* while epoll is using them. This is held during the event
* collection loop, the file cleanup path, the epoll file exit
* code and the ctl operations.
*/
//对事件进行处理时,内核都都会持有这个互斥锁,因此在内核态中epoll的相关操作可以保证是线程安全的
struct mutex mtx;
/* Wait queue used by sys_epoll_wait() */
//调用sys_epoll_wait()时,存放当前进程的等待队列
wait_queue_head_t wq;
/* Wait queue used by file->poll() */
//此等待队列存放监听事件的poll操作
wait_queue_head_t poll_wait;
/* List of ready file descriptors */
//为每个事件都会分配一个epitem,当事件就绪时其所对应的epitem就会链入rdllist双向链表中
//epitem数据类型定义在上面
struct list_head rdllist;
/* RB tree root used to store monitored fd structs */
//为每个事件都会分配一个epitem,所有的epitem都会存放在这个红黑树中
struct rb_root rbr;
/*
* This is a single linked list that chains all the "struct epitem" that
* happened while transferring ready events to userspace w/out
* holding ->lock.
*/
//就绪事件在转移到用户空间时,发生了就绪事件,其所对应的epitem被链入ovflist双向链表中
struct epitem *ovflist;
/* The user that created the eventpoll descriptor */
//保存用户信息,比如资源的上限值
struct user_struct *user;
};
SYSCALL_DEFINE1(epoll_create1, int, flags)
{
int error;
//eventpoll是epoll中非常重要的数据结构!每一个epollfd都有一个对应的eventpoll数据结构
//eventpoll数据结构定义在上面
struct eventpoll *ep = NULL;
/* Check the EPOLL_* constant for consistency. */
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
if (flags & ~EPOLL_CLOEXEC)
return -EINVAL;
/*
* Create the internal data structure ("struct eventpoll").
*/
//初始化一个eventpoll数据结构
//ep_alloc定义在下面
error = ep_alloc(&ep);
if (error < 0)
return error;
/*
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure and a free file descriptor.
*/
//创建epollfd
//因为epollfd并不存在真正对应的文件,所以内核创建了一个虚拟的文件,并为这个虚拟文件分配struct file数据结构
//参数eventpoll_fops就是file operations,即文件支持的操作
//关于file operations在之前的poll机制内核源代码剖析一文中已经做了非常深入的解释
//这里简单解释一下,file operations中的每一个成员都是回调函数指针,对应每一种操作的具体实现
//epollfd文件实现了三种操作,即release、poll、llseek
//eventpoll_fops数据结构定义在下面
//参数ep就是epollfd所对应的eventpoll数据结构,在anon_inode_getfd中,将struct file的private_data成员赋值为ep的地址
//anon_inode_getfd定义在下面
error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
O_RDWR | (flags & O_CLOEXEC));
if (error < 0)
ep_free(ep);
//返回epollfd的值
return error;
}
SYSCALL_DEFINE1(epoll_create, int, size)
{
//实际上传入的size参数并没有什么用。。。
if (size <= 0)
return -EINVAL;
//sys_epoll_create1定义在上面
return sys_epoll_create1(0);
}
static int ep_alloc(struct eventpoll **pep)
{
int error;
struct user_struct *user;
struct eventpoll *ep;
//获取当前用户信息
user = get_current_user();
error = -ENOMEM;
//通过kmalloc为eventpoll数据结构分配内存空间
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (unlikely(!ep))
goto free_uid;
spin_lock_init(&ep->lock);
mutex_init(&ep->mtx);
//初始化eventpoll中的wq
init_waitqueue_head(&ep->wq);
//初始化eventpoll中的poll_wait
init_waitqueue_head(&ep->poll_wait);
//初始化存放就绪事件所对应的epitem的双向链表
INIT_LIST_HEAD(&ep->rdllist);
//初始化存放所有事件对应的epiitem的红黑树,初始值为NULL
//#define RB_ROOT (struct rb_root) { NULL, }
ep->rbr = RB_ROOT;
//初始化转移到用户空间之前,存放就绪事件所对应的epitem的双向链表,初始值为-1L
//#define EP_UNACTIVE_PTR ((void *) -1L)
ep->ovflist = EP_UNACTIVE_PTR;
//初始化用户信息
ep->user = user;
//为eventpoll数据结构指针赋值
*pep = ep;
return 0;
free_uid:
free_uid(user);
return error;
}
//由此可见epollfd所对应的的匿名文件只实现了三种操作
//release操作为释放epollfd所对应的eventpoll数据结构
//ep_eventpoll_release定义在下面
//poll操作为事件就绪时,调用poll操作对应的回调函数对当前进程进行一些列操作
//ep_eventpoll_poll定义先放一边,在epoll_wait中会详细解释
//llseek操作为获取匿名文件的游标偏移
//noop_llseek定义在下面
static const struct file_operations eventpoll_fops = {
.release = ep_eventpoll_release,
.poll = ep_eventpoll_poll,
.llseek = noop_llseek,
};
static int ep_eventpoll_release(struct inode *inode, struct file *file)
{
//通过struct file中的成员private_data得到epollfd所对应的eventpoll数据结构
struct eventpoll *ep = file->private_data;
//释放eventpoll数据结构
if (ep)
ep_free(ep);
return 0;
}
loff_t noop_llseek(struct file *file, loff_t offset, int origin)
{
//返回当前文件的偏移量
return file->f_pos;
}
int anon_inode_getfd(const char *name, const struct file_operations *fops,
void *priv, int flags)
{
int error, fd;
struct file *file;
//分配文件描述符,即epollfd
error = get_unused_fd_flags(flags);
if (error < 0)
return error;
fd = error;
//创建匿名文件
file = anon_inode_getfile(name, fops, priv, flags);
if (IS_ERR(file)) {
error = PTR_ERR(file);
goto err_put_unused_fd;
}
//将文件描述符fd和匿名文件绑定,即将file_struct中的fdtable的成员fd[fd]赋值为file
fd_install(fd, file);
//返回epollfd的值
return fd;
err_put_unused_fd:
put_unused_fd(fd);
return error;
}
- epoll_ctl
struct epoll_event {
__u32 events; //epoll事件类型
__u64 data; //指定所要监听的事件的文件描述符
} EPOLL_PACKED;
//参数epfd就是epoll_create中返回的epollfd
//参数op指定对事件的操作类型,具体分为三种
//#define EPOLL_CTL_ADD 1 添加新的监听事件
//#define EPOLL_CTL_DEL 2 删除监听事件
//#define EPOLL_CTL_MOD 3 修改监听事件
//参数fd就是想要操作的文件描述符
//参数event表示监听的是什么事件类型
//数据可读事件EPOLLIN、高效工作事件模式EPOLLET、事件只被处理一次EPOLLONESHOT
//epoll_event数据结构定义在上面
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
struct epoll_event __user *, event)
{
int error;
int did_lock_epmutex = 0;
struct file *file, *tfile;
struct eventpoll *ep;
struct epitem *epi;
struct epoll_event epds;
error = -EFAULT;
//ep_op_has_event中为return op != EPOLL_CTL_DEL;即判断op操作是否为删除监听事件
//从用户拷贝epoll_event数据结构到内核空间
if (ep_op_has_event(op) &&
copy_from_user(&epds, event, sizeof(struct epoll_event)))
goto error_return;
/* Get the "struct file *" for the eventpoll file */
error = -EBADF;
//获取epollfd所对应的匿名文件struct file数据结构
file = fget(epfd);
if (!file)
goto error_return;
/* Get the "struct file *" for the target file */
//获取所要操作的文件描述符所对应的struct file数据结构
tfile = fget(fd);
if (!tfile)
goto error_fput;
/* The target file descriptor must support poll */
error = -EPERM;
//判断所要监听的事件是否支持文件操作或poll操作
if (!tfile->f_op || !tfile->f_op->poll)
goto error_tgt_fput;
/*
* We have to check that the file structure underneath the file descriptor
* the user passed to us _is_ an eventpoll file. And also we do not permit
* adding an epoll file descriptor inside itself.
*/
error = -EINVAL;
//判断所要监听的事件是否是epollfd本身、判断所要监听的事件是否支持epoll对文件的三种操作
if (file == tfile || !is_file_epoll(file))
goto error_tgt_fput;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
//从struct file数据结构中获取eventpoll数据结构
ep = file->private_data;
/*
* When we insert an epoll file descriptor, inside another epoll file
* descriptor, there is the change of creating closed loops, which are
* better be handled here, than in more critical paths.
*
* We hold epmutex across the loop check and the insert in this case, in
* order to prevent two separate inserts from racing and each doing the
* insert "at the same time" such that ep_loop_check passes on both
* before either one does the insert, thereby creating a cycle.
*/
//检查监听的事件是否支持epoll对文件的三种操作且为添加事件
//当我们插入一个epoll文件描述符时,在另一个epoll文件描述符中,创建闭环,这在这里更好地处理,而不是更关键的路径。
//在这种情况下,我们保留epmutex的循环检查和插入,以防止两个单独的插入,并且每个插入“同时进行”,使得ep_loop_check在两个插入之前都通过,从而创建一个周期。
if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {
mutex_lock(&epmutex);
did_lock_epmutex = 1;
error = -ELOOP;
if (ep_loop_check(ep, tfile) != 0)
goto error_tgt_fput;
}
mutex_lock_nested(&ep->mtx, 0);
/*
* Try to lookup the file inside our RB tree, Since we grabbed "mtx"
* above, we can be sure to be able to use the item looked up by
* ep_find() till we release the mutex.
*/
//epoll不允许重复添加fd
//在eventpoll数据结构中的rbr红黑树里,根据监听事件的struct和fd,与每一个epitem中的epoll_filefd数据结构进行比较
//找到返回监听事件对应的epitem,没有找到返回NULL
epi = ep_find(ep, tfile, fd);
error = -EINVAL;
//根据对事件的操作进行分类操作
switch (op) {
//添加新的监听事件
case EPOLL_CTL_ADD:
//如果之前不存在此事件才可以添加
if (!epi) {
//添加内核关心的事件类型POLLERR和POLLHUP
epds.events |= POLLERR | POLLHUP;
//真正的添加新的监听事件
//ep_insert定义在下面
error = ep_insert(ep, &epds, tfile, fd);
} else
error = -EEXIST;
break;
//删除事件
case EPOLL_CTL_DEL:
//如果存在此事件才可以删除
if (epi)
//ep_remove就不剖了。。
error = ep_remove(ep, epi);
else
error = -ENOENT;
break;
//修改事件
case EPOLL_CTL_MOD:
if (epi) {
epds.events |= POLLERR | POLLHUP;
//ep_modify就不剖了。。。
error = ep_modify(ep, epi, &epds);
} else
error = -ENOENT;
break;
}
mutex_unlock(&ep->mtx);
error_tgt_fput:
if (unlikely(did_lock_epmutex))
mutex_unlock(&epmutex);
fput(tfile);
error_fput:
fput(file);
error_return:
return error;
}
typedef struct poll_table_struct {
//poll_queue_proc就是当监听事件就绪时,对事件进行具体操作的回调函数
poll_queue_proc qproc;
//key记录对监听事件的何种event感兴趣
unsigned long key;
} poll_table;
struct ep_pqueue {
//poll_table数据结构和poll回调函数机制有关
//poll_table数据结构定义在上面
poll_table pt;
//记录对应的epitem数据结构
struct epitem *epi;
};
static inline void init_poll_funcptr(poll_table *pt, poll_queue_proc qproc)
{
//初始化poll机制的回调函数
pt->qproc = qproc;
//初始化感兴趣的事件类型,初值为对所有event都感兴趣
pt->key = ~0UL; /* all events enabled */
}
//ep参数为epollfd所对应的eventpoll数据结构
//event参数为新监听事件的epoll事件类型,即epoll_event数据结构
//tfile参数为新监听事件所对应的struct file数据结构
//fd参数为新监听事件的文件描述符
static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
struct file *tfile, int fd)
{
int error, revents, pwake = 0;
unsigned long flags;
long user_watches;
struct epitem *epi;
struct ep_pqueue epq;
//将当前用户的监听事件数加1
user_watches = atomic_long_read(&ep->user->epoll_watches);
//判断是否超过当前用户的最大监听数
if (unlikely(user_watches >= max_user_watches))
return -ENOSPC;
//从slab中分配一个epitem数据结构
if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
return -ENOMEM;
/* Item initialization follow here ... */
//初始化各个链表
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->pwqlist);
//记录epitem所对应的eventpoll数据结构
epi->ep = ep;
//在epitem中的epoll_filefd数据结构中记录新监听事件所对应的struct file数据结构和文件描述符fd
ep_set_ffd(&epi->ffd, tfile, fd);
//记录新监听事件,想要监听的事件类型
epi->event = *event;
//poll操作上的等待队列个数初始化为0
epi->nwait = 0;
//初始化epitem在eventpoll中的ovflist链表的后继为(void *) -1L
epi->next = EP_UNACTIVE_PTR;
/* Initialize the poll table using the queue callback */
//记录ep_pqueue中的epitem数据结构
//epq数据类型为ep_pqueue,ep_pqueue数据结构定义在上面
epq.epi = epi;
//初始化poll_table数据结构
//init_poll_funcptr定义在上面
init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
/*
* Attach the item to the poll hooks and get current event bits.
* We can safely use the file* here because its usage count has
* been increased by the caller of this function. Note that after
* this operation completes, the poll callback can start hitting
* the new item.
*/
//对监听事件所对应的struct file中的file operation中的poll操作进行初始化,即对poll回调函数进行初始化,详细的poll机制回调函数在之前已经做了详细说明
//返回值为已经就绪的事件
revents = tfile->f_op->poll(tfile, &epq.pt);
/*
* We have to check if something went wrong during the poll wait queue
* install process. Namely an allocation for a wait queue failed due
* high memory pressure.
*/
error = -ENOMEM;
//如果内存不够,有可能导致等待队列分配失败,所以此时需要判断等待队列是否存在
if (epi->nwait < 0)
goto error_unregister;
/* Add the current item to the list of active epoll hook for this file */
spin_lock(&tfile->f_lock);
//将epitem链入监听事件所对应的strcut file中的f_ep_links成员上
list_add_tail(&epi->fllink, &tfile->f_ep_links);
spin_unlock(&tfile->f_lock);
/*
* Add the current item to the RB tree. All RB tree operations are
* protected by "mtx", and ep_insert() is called with "mtx" held.
*/
//将epitem插入到epollfd所对应的eventpolld中的rbr红黑树中
ep_rbtree_insert(ep, epi);
/* We have to drop the new item inside our item list to keep track of it */
spin_lock_irqsave(&ep->lock, flags);
/* If the file is already "ready" we drop it inside the ready list */
//此时判断一下是不是新的监听事件已经就绪且就绪链表为空
if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
//将epitem链入就绪链表中
list_add_tail(&epi->rdllink, &ep->rdllist);
/* Notify waiting tasks that events are available */
//判断eventpoll中的wq等待队列是否为NULL,如果不为空,就唤醒等待队列上对应的进程
if (waitqueue_active(&ep->wq))
wake_up_locked(&ep->wq);
//判断poll_wait等待队列是否为NULL,如果不为NULL,pwake加1
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
spin_unlock_irqrestore(&ep->lock, flags);
atomic_long_inc(&ep->user->epoll_watches);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&ep->poll_wait);
return 0;
error_unregister:
ep_unregister_pollwait(ep, epi);
/*
* We need to do this because an event could have been arrived on some
* allocated wait queue. Note that we don't care about the ep->ovflist
* list, since that is used/cleaned only inside a section bound by "mtx".
* And ep_insert() is called with "mtx" held.
*/
spin_lock_irqsave(&ep->lock, flags);
if (ep_is_linked(&epi->rdllink))
list_del_init(&epi->rdllink);
spin_unlock_irqrestore(&ep->lock, flags);
kmem_cache_free(epi_cache, epi);
return error;
}
- epoll_wait
//参数epfd就是epollfd
//参数events指向一个数组,用来存放最后返回的就绪事件
//参数maxevents表示最多监听多少个事件
//参数timeout表示阻塞时间
SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
int, maxevents, int, timeout)
{
int error;
struct file *file;
struct eventpoll *ep;
/* The maximum number of event must be greater than zero */
//判断maxevents是否合法
if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
return -EINVAL;
/* Verify that the area passed by the user is writeable */
//判断用户传入的events指向的空间是否合法有效
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
error = -EFAULT;
goto error_return;
}
/* Get the "struct file *" for the eventpoll file */
error = -EBADF;
//通过epollfd获得其所对应的struct file数据结构
file = fget(epfd);
if (!file)
goto error_return;
/*
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
//判断file文件是否支持epoll对文件的操作
if (!is_file_epoll(file))
goto error_fput;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
//struct file中的private_data成员存储着epollfd对应的eventpoll数据结构
ep = file->private_data;
/* Time to fish for events ... */
//ep_poll的定义在下面
error = ep_poll(ep, events, maxevents, timeout);
error_fput:
fput(file);
error_return:
return error;
}
//参数ep为epollfd所对应的eventpoll数据结构
//其余参数与epoll_wait参数含义相同
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
int maxevents, long timeout)
{
int res = 0, eavail, timed_out = 0;
unsigned long flags;
long slack = 0;
//存放当前进程的等待队列
wait_queue_t wait;
ktime_t expires, *to = NULL;
//如果阻塞时间大于0,就将timeout转化为计算机内部的时间
if (timeout > 0) {
struct timespec end_time = ep_set_mstimeout(timeout);
slack = select_estimate_accuracy(&end_time);
to = &expires;
*to = timespec_to_ktime(end_time);
}
//如果阻塞时间等于0,即非阻塞模式就直接调转到check_events执行
else if (timeout == 0) {
/*
* Avoid the unnecessary trip to the wait queue loop, if the
* caller specified a non blocking operation.
*/
timed_out = 1;
spin_lock_irqsave(&ep->lock, flags);
goto check_events;
}
fetch_events:
spin_lock_irqsave(&ep->lock, flags);
//如果eventpoll中的rdllist为空或者ovflist为初始化值EP_UNACTIVE_PTR时,满足条件
if (!ep_events_available(ep)) {
/*
* We don't have any available event to return to the caller.
* We need to sleep here, and we will be wake up by
* ep_poll_callback() when events will become available.
*/
//初始化等待队列wait,参数current是一个宏,代表当前进程
//init_waitqueue_entry定义在下面
init_waitqueue_entry(&wait, current);
//将等待队列wait添加到eventpoll中的wq等待队列中
__add_wait_queue_exclusive(&ep->wq, &wait);
for (;;) {
/*
* We don't want to sleep if the ep_poll_callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
//将当前进程调度后的状态设置为浅睡眠,即可中断睡眠状态
set_current_state(TASK_INTERRUPTIBLE);
//如果此时eventpoll中的rdllist就绪链表不为NULL或ovflist不为EP_UNACTIVE_PTR或timed_out为0,那么就不再调度了,直接break跳出循环
if (ep_events_available(ep) || timed_out)
break;
//如果此时收到了信号,那么也不再调度了,直接break跳出循环
if (signal_pending(current)) {
res = -EINTR;
break;
}
spin_unlock_irqrestore(&ep->lock, flags);
//当前进程被调度,进入前睡眠状态
//在此期间,若发生事件就绪或收到信号,就执行poll回调机制
if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
timed_out = 1;
spin_lock_irqsave(&ep->lock, flags);
}
//此时已从for循环中跳出
//从eventpoll中的wq等待队列里删除wait等待队列
__remove_wait_queue(&ep->wq, &wait);
//设置当前进程下一次调度的状态为运行中状态
set_current_state(TASK_RUNNING);
}
check_events:
/* Is it worth to try to dig for events ? */
//判断此时eventpoll中的rdllist是否为空或者ovflist为初始化值是否为EP_UNACTIVE_PTR
eavail = ep_events_available(ep);
spin_unlock_irqrestore(&ep->lock, flags);
/*
* Try to transfer events to user space. In case we get 0 events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
//此时尝试将就绪事件传输到用户空间
//如果我们得到0个就绪事件,还有超时时间,就跳转至fetch_events
//ep_send_events定义在下面
if (!res && eavail &&
!(res = ep_send_events(ep, events, maxevents)) && !timed_out)
goto fetch_events;
return res;
}
static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
{
q->flags = 0; //将等待队列状态初始化为0
q->private = p; //将等待队列的成员private指针初始化为p,即当前进程
q->func = default_wake_function; //将等待队列的成员func初始化为default_wake_function,即唤醒进程时的函数
}
//参数含义与ep_poll函数参数相同,不再赘述
static int ep_send_events(struct eventpoll *ep,
struct epoll_event __user *events, int maxevents)
{
//初始化ep_send_events_data数据结构,这个数据结构就只包含maxevents和events
struct ep_send_events_data esed;
esed.maxevents = maxevents;
esed.events = events;
//ep_scan_ready_list定义在下面
return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
}
//参数ep为epollfd所对应的eventpoll
//参数sproc为函数指针,调用时赋值为ep_send_events_proc
//参数priv指向ep_send_events_data数据结构
//参数depth初始化为0
static int ep_scan_ready_list(struct eventpoll *ep,
int (*sproc)(struct eventpoll *,
struct list_head *, void *),
void *priv,
int depth)
{
int error, pwake = 0;
unsigned long flags;
struct epitem *epi, *nepi;
LIST_HEAD(txlist);
/*
* We need to lock this because we could be hit by
* eventpoll_release_file() and epoll_ctl().
*/
mutex_lock_nested(&ep->mtx, depth);
/*
* Steal the ready list, and re-init the original one to the
* empty list. Also, set ep->ovflist to NULL so that events
* happening while looping w/out locks, are not lost. We cannot
* have the poll callback to queue directly on ep->rdllist,
* because we want the "sproc" callback to be able to do it
* in a lockless way.
*/
spin_lock_irqsave(&ep->lock, flags);
//此时所有发生就绪事件的epitem都已经链入了eventpoll中的rdllist就绪链表了
//此时将rdllist就绪链表上的所有元素都转移到txlist中,而rdllist被清空
list_splice_init(&ep->rdllist, &txlist);
//将ovlist置NULL,是因为此时不希望再有新的就绪事件对应的epitem加入到rdllist中
ep->ovflist = NULL;
spin_unlock_irqrestore(&ep->lock, flags);
/*
* Now call the callback function.
*/
//此时调用参数传入的回调函数,即ep_send_events_proc
//ep_send_events_proc定义在下面
error = (*sproc)(ep, &txlist, priv);
spin_lock_irqsave(&ep->lock, flags);
/*
* During the time we spent inside the "sproc" callback, some
* other events might have been queued by the poll callback.
* We re-insert them inside the main ready-list here.
*/
//当调用ep_send_events_proc函数时,即向用户空间传递数据时
//发生了就绪事件,这些就绪事件对应的epitem都链入了eventpoll中的ovflist
//现在遍历ovflist链表,依次处理这些epitem
for (nepi = ep->ovflist; (epi = nepi) != NULL;
nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
/*
* We need to check if the item is already in the list.
* During the "sproc" callback execution time, items are
* queued into ->ovflist but the "txlist" might already
* contain them, and the list_splice() below takes care of them.
*/
//如果epitem存在,就将epitem尾插进rddlist中
if (!ep_is_linked(&epi->rdllink))
list_add_tail(&epi->rdllink, &ep->rdllist);
}
/*
* We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
* releasing the lock, events will be queued in the normal way inside
* ep->rdllist.
*/
//将ovflist置为EP_UNACTIVE_PTR,即((void *) -1L)
ep->ovflist = EP_UNACTIVE_PTR;
/*
* Quickly re-inject items left on "txlist".
*/
//经过ep_send_events_proc对epitem的处理后,有的epitem还未被处理完,将这些epitem重新链入rdllist中
list_splice(&txlist, &ep->rdllist);
//如果rdllist就绪链表不为NULL时
if (!list_empty(&ep->rdllist)) {
/*
* Wake up (if active) both the eventpoll wait list and
* the ->poll() wait list (delayed after we release the lock).
*/
//当wq等待队列wq不为NULL时
if (waitqueue_active(&ep->wq))
//唤醒等待队列wq上的成员,及当前进程
wake_up_locked(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
spin_unlock_irqrestore(&ep->lock, flags);
mutex_unlock(&ep->mtx);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&ep->poll_wait);
return error;
}
//参数ep为epollfd所对应的eventpoll
//参数head为txlist
//参数priv为ep_send_events_data数据结构
static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
void *priv)
{
struct ep_send_events_data *esed = priv;
int eventcnt;
unsigned int revents;
struct epitem *epi;
struct epoll_event __user *uevent;
/*
* We can loop without lock because we are passed a task private list.
* Items cannot vanish during the loop because ep_scan_ready_list() is
* holding "mtx" during this call.
*/
//遍历整个txlist链表
for (eventcnt = 0, uevent = esed->events;
!list_empty(head) && eventcnt < esed->maxevents;) {
//获取txlist链表中的第一个节点
epi = list_first_entry(head, struct epitem, rdllink);
//从txlink链表中将epitem删除
list_del_init(&epi->rdllink);
//获取此时,最新的epitem的就绪事件类型
revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
epi->event.events;
/*
* If the event mask intersect the caller-requested one,
* deliver the event to userspace. Again, ep_scan_ready_list()
* is holding "mtx", so no operations coming from userspace
* can change the item.
*/
//再一次判断是否有就绪事件发生
if (revents) {
//将当前的就绪事件拷贝到用户空间中
//如果此时epitem还没有处理完,就将epitem再链入txlist链表中
if (__put_user(revents, &uevent->events) ||
__put_user(epi->event.data, &uevent->data)) {
list_add(&epi->rdllink, head);
return eventcnt ? eventcnt : -EFAULT;
}
eventcnt++;
uevent++;
if (epi->event.events & EPOLLONESHOT)
epi->event.events &= EP_PRIVATE_BITS;
//判断fd是否为ET模式,如果不是ET模式,就要将自己再一次链入rdllist就绪链表中,这是LT和ET模式本质区别
//以便下次调用epoll_wait()会再次检查事件的可用性
else if (!(epi->event.events & EPOLLET)) {
/*
* If this file has been added with Level
* Trigger mode, we need to insert back inside
* the ready list, so that the next call to
* epoll_wait() will check again the events
* availability. At this point, no one can insert
* into ep->rdllist besides us. The epoll_ctl()
* callers are locked out by
* ep_scan_ready_list() holding "mtx" and the
* poll callback will queue them in ep->ovflist.
*/
list_add_tail(&epi->rdllink, &ep->rdllist);
}
}
}
return eventcnt;
}
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!